Lecture 1: Introduction*

CS 392/ 681: Computer Security
Fall 2006

Nitesh Saxena

*Adopted from Previous Lectures by Nasir Memon
Outline

- Administrative Stuff
- Introductory Technical Stuff
Some Pointers

- Course Web Page
 http://isis.poly.edu/courses/cs392-f2006

- Instructor: Nitesh Saxena
 - Office: LC 228
 - Email: nsaxena@poly.edu
 - Phone No: 718-260-3116
 - Office Hours: Wednesday 3-4pm (or by appointment)

- TA/Grader: TBA

- MyPoly Web Page: http://my.poly.edu/
About the Instructor

- A fresh PhD graduate from UC Irvine
- Research in computer and network security, and applied cryptography
- Dissertation “Decentralized Security Services”
- (Old) web page: http://www.ics.uci.edu/~nitesh
Prerequisites

1. Solid background in Mathematics
2. Good programming skills
3. Knowledge in Algorithms/Data Structures
4. [Others]
 1. Operating Systems
 2. Networks

- If you don’t satisfy the prerequisites
 - Drop the course or
 - Talk to me
What to expect

- The course would be quite tough
 - Lot of math and programming
 - Hectic schedule; heavy workload
- The grading might not be curved
 - I won’t mind giving F’s (I would love to give A+’s)
- I might/will make mistakes
 - Please point them out
 - Talk to me if you have any complaints (or send me an anonymous email 😊)
- **But, I guarantee that**
 - you’ll have fun
 - you won’t become experts, but you will learn enough to move on!
 - you’ll hopefully get motivated to pursue research in this area, ultimately

- Drop the course now if
 - you are not serious
 - you think it would be an easy substitute
 - you think you will learn “hacking”
 - you think he’s a new instructor, so he’ll keep the course easy and give away grades
Other Security Courses at Poly

- Network Security
- Cryptography: to be offered next semester
- Other specialized courses
Course References

- Introduction to Computer Security - Matt Bishop
- Other references to be provided as we proceed
Grading

- 50% - Homeworks and Programming assignments
 - Two sets
 - Everyone has to do the first set
 - 681 students might need to do a project instead of the second set

- 50% - 2 Midterms and 1 Final
Tentative Course Schedule

- Basic Cryptography
 - First few lectures
- Some Network Security: Protocol Design
- Access Control
- Security Policies and Design Principles
- Threat Modeling
- Information Flow and Assurance
- System Evaluation
- Privacy and Anonymity
- …
Good News: HW #1 is assigned

- See course web page
- Due next Thursday (mid-night)
 09/14/06
- Be honest in your answers - this will give me an idea as to where you stand and help me mold my lectures accordingly
Computer Security: Why it is important?

- The numbers speak for themselves.
 - CERT Statistics

- Our computer systems are quite vulnerable
 - Poor design or after the fact design
 - Lack of awareness and education
 - Under-estimation of threat model
 - Lack of ability to attribute attacks
 - Buggy software

Primary motivation for the course!
Threats, Vulnerabilities and Attacks

- A *threat* to a system is any potential occurrence, malicious or otherwise, that can have an adverse effect on the assets and resources associated with the system.

- A *vulnerability* of a system is some characteristic that makes it possible for a threat to occur.

- An *attack* on a system is some action that involves exploitation of some vulnerability in order to cause an existing threat to occur.
Types of Threats

- Can be classified into four broad categories
 - Disclosure - unauthorized access to information
 - Deception - acceptance of false data
 - Disruption - interruption or prevention of correct operation
 - Usurpation - unauthorized control of some part of a system

- Examples include – snooping, sniffing, spoofing, delay, repudiation, denial of service, unauthorized information modification or creation, theft of computational resources etc.
Primary Issues

- **Confidentiality**: prevention of unauthorized disclosure of information

- **Integrity**: prevention of unauthorized modification of information

- **Availability**: ability to withstand unauthorized withholding of information or resources

- **Security** – freedom from risk and danger.
- In early days of computers security meant physical security and confidentiality.
- Integrity and access control then became important with multi-tasking computers.
- In recent years availability is a big issue.
- Now security is hard to define!!
Computer Security Definitions.

- Security is the ability of a system to protect information and system resources with respect to confidentiality, integrity, and availability.

- Computer Security deals with the prevention and detection of unauthorized actions by users of a computer system.

- Computer security is preventing attackers from achieving objectives through unauthorized access or unauthorized use of computers and networks.

- Cheswik and Bellovin – “keeping anyone from doing things you do not want them to do, with, on, or from your computers or any peripheral devices.”

- Garfinkel and Spafford - “A computer is secure if you can depend on it and its software to behave as you expect ... This concept is often called trust; you trust the system to preserve and protect your data.”
Computer Security - other issues

- There are other issues that arise in the design of secure systems besides confidentiality, availability and integrity:
 - Accountability
 - Reliability
 - Access Control
 - Authentication
 - Non-repudiation
 - Privacy
 - Auditing and Vulnerability Analysis
 - Evaluation of Secure Systems
 - etc etc...
A **security policy** is a statement of what is, and is not, allowed.
- Expressed mathematically. Axiomatic.
- List of allowed and disallowed actions

A **security mechanism** is a procedure, tool, or method of enforcing security policy.
- Can be non-technical
Security Policy

- A security policy is a set of rules stating which actions are permitted and which are not.
- Can be informal or highly mathematical.
- If we consider a computer system to be a finite state automaton with state transitions then
 - A security policy is a statement that partitions the states of a system into a set of authorized or secure states and a set of unauthorized or non-secure states.
 - A secure system is a system that starts in an authorized state and cannot enter an unauthorized state.
 - A breach of security occurs when a system enters an unauthorized state.
- We expect a trusted system to enforce the required security policies.
Elements of a Security Policy

- A security policy considers all relevant aspects of confidentiality, integrity and availability.
 - Confidentiality policy: Identifies information leakage and controls information flow.
 - Integrity Policy: Identifies authorized ways in which information may be altered. Enforces separation of duties.
 - Availability policy: Describes what services must be provided: example – a browser may download pages but no Java applets.
Security Mechanism

- A **security mechanism** is a procedure that enforces some part of a security policy.
- We will learn many cryptographic and non-cryptographic mechanisms.
CS Department Security Policy

- http://cis.poly.edu/security-policy.html
Goals of Security

Given a policy that specifies what is “secure” and what is “non-secure” goal of security is to put in place mechanisms that provide:

- Prevention
 - Involves implementing mechanisms that users cannot override and are trusted to be implemented in correct and unalterable ways.

- Detection
 - Goal is to determine that an attack is underway, or has occurred and report it.

- Recovery
 - Resuming correct operation either after an attack or even while an attack is underway.
Methods of Defense

- Security policies
- Cryptography and cryptographic protocols.
- Software controls.
 - Internal program controls.
 - Operating system controls.
 - Development controls.
- Hardware controls.
- Physical controls.
Trust

- Security policies and mechanisms are based on assumptions and one trusts these assumptions hold.

- Aspirin from drugstore is considered trustworthy. The basis of this trust is:
 - Testing and certification by FDA.
 - Manufacturing standard of company and regulatory mechanisms that ensure it.
 - Safety seal on the bottle.

- Similarly, for a secure system to achieve trust, specific steps need to be taken.
Let A be the set of secure states (as specified by some security policy). Let the security mechanisms restrict the system to some set of states R.

- A security mechanism is *secure* if $R \subseteq A$; it is *precise* if $R = A$; and it is *broad* if there are states r such that $r \in R$ and $r \notin R$.

- Trusting the mechanism requires us to assume:
 - Each mechanism designed to implement part of policy
 - Union of mechanisms implement all aspects of policy
 - Implemented correctly
 - Installed and administered correctly
Specification, Design and Implementation

- A specification is a statement of the desired functioning of the system.
- Design of a system translates the specifications into components that will implement the specifications.
- Given a design, an implementation creates a system that satisfies the design.
Assurance: how much to trust?

- How do we quantify trust?
- System *specification*, *design*, and *implementation* can provide a basis for determining how much to trust - *assurance*.
- When you buy a bottle of aspirin from a drug store you trust it. Why?
 - FDA, Manufacturing standards, safety seal on bottle provide assurance.
Operational Issues in Security

- Cost-Benefit Analysis: Difficult to do in a precise manner
- Risk Analysis: Is often subjective
- Laws and Custom
- Human Issues
Security Life Cycle

- Threats
- Policy
- Specification
- Design
- Implementation
- Operation and Maintenance
Some Questions

- I access internet via your wireless access point: this is an example of ------?
- Alice knows that Bob bought a herpes drug today: what’s violated?
- I use an open smtp server to send an email using your email address: I ----ed you?
- My emails are residing on hotmail’s server: what do I trust?
- Microsoft keeps issuing security patches for their softwares: what stages in security life cycles are involved?
Some Questions

- University policy disallows cheating – copying another student's homework assignment. Student A has her homework file world readable. Student B copies it. Has B violated the policy?
- Eve jams the wireless signal in the CS: what does she achieve?
- INS officials identify immigrants using their fingerprints: what is the primary assumption in play?
- US law allows sharing movies using for example Kazaa: true or false?
- Alice is dead. Could Alice’s mother get access to her late daughter’s emails residing on yahoo’s server?
Further Reading

- Must read chapter 1 of text
- Must read “What is There to Worry About? An Introduction to the Computer Security Problem” by Brinkley and Schell
- Optional read “Concepts and Terminology for Computer Security” by Brinkley and Schell