HW #1: Warm up!

CS 392/681: Computer Security
Fall 2006

[100pts] DUE 09/14/2005

Objective

The goal of this homework is for me to get a feel of how literate (or illiterate 😊) you are in the area of computer security, and what your background is like. This will help me know the class better and adopt my lectures accordingly.

Problem 1

• [10pts] List and explain in detail two problems related to computer security that you know of or that you encounter in your day-to-day life. Illustrate the problems with examples.

• [10pts] Do you know of any solutions that have been adopted to tackle these problems? If so, explain in detail these solutions.

• [5pts] Are these solutions satisfactory? Explain why or why not.

• [5pts] If the solutions are not satisfactory, do you think they can be improved? If so, explain how.

Problem 2

1. [10pts] While logging yourself in using a pair of username and password, say, at a web mailing service, you might have noticed that you are often timed-out after 3 failed attempts? What do you think this might protect against?

2. [10pts] If I give you my cell phone number, a four digit number S and tell you who my service provider is, would you be able to tell if S corresponds to the last four digits of my social security number (SSN)? Would you be able to crack the last four digits of my SSN? [You can use your cell phone number and info about your service provider to figure out the answer]

Problem 3

2. [10pts] What is the greatest common divisor (gcd) (I assume the meaning is self-explanatory!) of
a. 18 and 24?
b. 18 and 19?

3. [10pts] Find a natural number x such that \(9x \mod 7 = 3\)? (“\(x \mod y\)” denotes the remainder obtained when natural number x is divided by a natural number y; e.g., \(18 \mod 5 = 3\))

4. [20 pts] I have a secret 10-bit long password \(K\). If I disclose a value \(K_0\) such that \(K_0 = f(K)\) for a \textit{public non-invertible} function \(f\) that takes an arbitrary long number and outputs a fixed length (say 1000-bit long) number. Is it possible (given a reasonably powerful computer) for you to determine \(K\), if you are given \(K_0, f()\) and the length of \(K\)? If so, how many calls to \(f()\) do you need to make in the worst case? What about if \(K\) is 40-bit long? What if it is 80-bit long?

\textbf{Instructions}

- I need a first hand input from you (even if it is a plain “I do not know”) – do not refer to or borrow material from other sources.