Lecture 8: Hash Functions

CS6903: Modern Cryptography
Spring 2010
Nitesh Saxena

Construction

- A hash function is typically based on internal compression function f() that works on fixed-size input blocks (Mi)

\[\text{IV} \xrightarrow{f} h_1 \xrightarrow{f} h_2 \xrightarrow{f} \cdots \xrightarrow{f} h_{n-1} \xrightarrow{f} h \]

- Works sort of like a Chained Block Cipher
 - Produces a hash value for each fixed-size block based on its content and based on the hash value for the previous block
 - "Avalanche" effect (1-bit change in input produces "catastrophic" changes in output)

- In fact, can use symmetric encryption: \(f=E() \), and use \(M_i \) as the key (but it won’t be fast)
Secure Hash Algorithm (SHA)
- SHA was published by NIST as a standard in 1993
 - Revised in 1995 as SHA-1
 - Input: Up to 2^64 bits
 - Output: 160 bit digest
 - 80-bit collision resistance
 - Pad with at least 64 bits to resist padding attack
 - 1024...0\text{message length}>
 - Processes 512-bit block
 - Initialize 5x32-bit MD registers
 - Apply compression function
 - 4 rounds of 20 steps each
 - each round uses different non-linear fi
 - registers are shifted and switched

Digest Generation with SHA-1

3/17/2010 Lecture 1 - Introduction
SHA-1 of a 512-Bit Block

Figure 3.5 SHA-1 Processing of a Single 512-bit Block

Basic Steps

Step1: Padding
Step2:Appending length as 64 bit unsigned
Step3: Initialize MD buffer 5 32-bit words
 A|B|C|D|E
 A = 67452301
 B = efcdb89
 C = 98badcfe
 D = 10325476
 E = c3d2e1f0
Basic Steps...

Step 4: the 80-step processing of 512-bit blocks: 4 rounds, 20 steps each
Each step \(t \) (\(0 \leq t \leq 79 \)):
- Input:
 - \(W_t \) - a 32-bit word from the message
 - \(K_t \) - a constant
 - ABCDE: current MD
- Output:
 - ABCDE: new MD

Basic Steps...

- Only 4 per-round distinctive additive constants
 - \(0 \leq t \leq 19 \quad K_t = 5A827999 \)
 - \(20 \leq t \leq 39 \quad K_t = 6ED9EBA1 \)
 - \(40 \leq t \leq 59 \quad K_t = 8F1BCCDC \)
 - \(60 \leq t \leq 79 \quad K_t = CA62C1D6 \)
Basic Steps - The Heart Of The Matter

A B C D E

Basic Logic Functions

- Only 3 different functions

Round Function \(f_t(B, C, D) \)
0 ≤ t ≤ 19 \((B \land C) \lor (\neg B \land D) \)
20 ≤ t ≤ 39 \(B \oplus C \oplus D \)
40 ≤ t ≤ 59 \((B \land C) \lor (B \land D) \lor (C \land D) \)
60 ≤ t ≤ 79 \(B \oplus C \oplus D \)
Twist With W_t's

- Additional mixing used with input message 512-bit block
 $W_0|W_1|...|W_{15} = m_0|m_1|m_2|...|m_{15}$
 For $15 \leq t < 80$:
 $W_t = W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3}$

- XOR is a very efficient operation, but with multilevel shifting, it should produce very extensive and random mixing!

Today’s Reading

- http://www-cse.ucsd.edu/users/mihir/cse207/w-hash.pdf
- HAC chapter on Hash Functions