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Digital images can now be easily created, altered, and manipulated with no obvious traces

of having been subjected to any of these operations. There are currently no established

methodologies to verify the authenticity and integrity of digital images in an automatic

manner. Digital image forensics is an emerging research field with important implications

for ensuring the credibility of digital images. In an attempt to assist these efforts, this

chapter surveys the recent developments in the field of digital image forensics. Proposed

techniques in the literature are categorized into three primary areas based on their fo-

cus: image source identification, discrimination of synthetic images, and image forgery

detection. The main idea of the proposed approaches in each category is described in

detail, and reported results are discussed to evaluate the potential of the methods.
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1. Introduction

In the analog world, an image (a photograph) has generally been accepted as a

“proof of occurrence” of the depicted event. In today’s digital age, the creation and

manipulation of digital images is made simple by low-cost hardware and software

tools that are easily and widely available. As a result, we are rapidly reaching

a situation where one can no longer take the authenticity and integrity of digital

images for granted. This trend undermines the credibility of digital images presented

as evidence in a court of law, as news items, as part of a medical record or as financial

documents since it may no longer be possible to distinguish whether a given digital

image is the original or a (maliciously) modified version or even a depiction of a

real-life occurrences and objects.

This is especially true when it comes to legal photographic evidence. The Fed-

eral Rules of Evidence are shaped and drafted to deal with conventional (analog)

photography. Digital photography, on the other hand, is fundamentally different

from conventional photography in the way it is created, stored, and edited. Federal

Rules do not currently set forth requirements for the admissibility of digital images,

and, therefore, traditional notions of relevancy and authentication currently govern.

Moreover, the problem becomes much more complicated (with possibly far more se-
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vere consequences) when the digital image is synthetically generated to convey the

depiction of a non-existent scene or object as the existing safeguards are not well

suited to verify the integrity and authenticity of such visual evidence. The struck

down of a 1996 child pornography law that prohibited the possession and distribu-

tion of synthetically generated images by United States Supreme Court, in April

2002, is very important in this context.1 This ruling brought with it an immediate

need for tools and techniques that can reliably discriminate natural images from

the synthetic ones in order to be able to prosecute abusers. Another pressing issue

concerning digital imagery is the ease with which processing tools and computer

graphics algorithms can be used to modify images. The increasing appearance of

digitally altered forgeries in mainstream media and on the internet is an indication

of the serious vulnerability that cast doubt on integrity of all digital images. In,2

some well known examples of digital tampering can be found.

To address these immediate problems, digital image forensics research aims at

uncovering underlying facts about an image. For example digital image forensics

techniques look for authoritative answers to questions such as:

• Is this image an ”original” image or was it created by cut and paste oper-

ations from different images?

• Does this image truly represent the original scene or was it digitally tam-

pered to deceive the viewer?

• What is the processing history of the image?

• What parts of the image has undergone processing and up to what extent?

• Was the image acquired by a source manufactured by vendor X or vendor

Y?

• Did this image originate from source X as claimed?

The above questions are just a few examples of issues faced routinely by investi-

gation and law enforcement agencies. However, there is a lack of techniques and

methodologies that could determine the origin and potential authenticity of a dig-

ital image. Although digital watermarks have been proposed as a tool to provide

authenticity to images, it is a fact that the overwhelming majority of images that

are captured today do not contain a digital watermark. And this situation is likely

to continue for the foreseeable future. Hence in the absence of widespread adoption

of digital watermarks, we believe it is imperative to develop techniques that can

help us make statements about the origin, veracity and nature of digital images.

The past few years have seen a growth of research on image forensics. The work

has focused mainly on three types of problems:

(1) Image source identification to determine through what data acquisition device a

given image is generated, e.g., digital-camera or scanner. This entails associating

the image with a class of sources that have common characteristics (i.e., device

model) and matching the image to an individual source device.

(2) Discrimination of synthetic images from real images to identify computer gen-
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erated images which does not depict a real-life occurrence.

(3) Image forgery detection to determine whether a given image has undergone any

form of modification or processing after it was initially captured.

To address these problems several techniques have been proposed. In this chapter,

we will give an overview of state-of-the-art digital image forensics techniques. The

outline of the chapter is as follows. In Section 2, we review various image source

identification techniques. This is followed by an overview of techniques for differen-

tiating synthetic images in Section 3. Image forgery (tamper) detection techniques

are described in Section 4. Finally, our conclusions and open problems will be given

in Section 5.

2. Image Source Identification

Image source identification research investigates the design of techniques to identify

the characteristics of digital data acquisition device (e.g., digital camera, camcorder,

and scanner) used in generation of an image. These techniques are expected to

achieve two major outcomes. The first is the class (model) properties of the source,

and the second is the individual source properties. Essentially, the two outcomes

refer two different operational settings. In determining the class properties, typically,

a single image is available for evaluation and the source information is extracted

through analyzing the image. In obtaining individual source properties, however,

both an image and the potential source device or a number of images known to be

acquired by the source is available for evaluation, and the analysis determines if the

characteristics of the image in question matches to those of the source.

The success of image source identification techniques depend on the assump-

tion that all images acquired by an image acquisition device will exhibit certain

characteristics that are intrinsic to the acquisition devices because of their (propri-

etary) image formation pipeline and the unique hardware components they deploy

regardless of the content of the image. (It should be noted that such devices gen-

erally encode the device related information, like model, type, date and time, and

compression details, in the image header, e.g., EXIF header. However, since this

information can be easily modified or removed, it cannot be used for forensics pur-

poses.) Due to prevalence of digital camera images, research has primarily focused

on source digital camera identification and scanner identification research is just

starting.

2.1. Image Formation in Digital Cameras and Scanners

The design of image source identification techniques requires an understanding of

the physics and operation of these devices. The general structure and sequence of

stages of image formation pipeline remains similar for almost all digital cameras

and scanners, although much of the details are kept as proprietary information of

each manufacturer. Below, we will describe the basic structure for a digital camera

and scanner pipeline.
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Digital Camera Pipeline: Consumer level digital cameras consist of a lens system,

sampling filters, color filter array, imaging sensor, and a digital image processor.3

The lens system is essentially composed of a lens and the mechanisms to control

exposure, focusing, and image stabilization to collect and control the light from

the scene. After the light enters the camera through the lens, it goes through a

combination of filters that includes at least the infra-red and anti-aliasing filters

to ensure maximum visible quality. The light is then focused onto imaging sensor,

an array of rows of columns of light-sensing elements called pixels. Digital cameras

deploy charge-coupled device (CCD) or complimentary metal-oxide semiconduc-

tor (CMOS) type of imaging sensors. Each light sensing element of sensor array

integrates the incident light over the whole spectrum and obtains an electric sig-

nal representation of the scenery. Since each imaging sensor element is essentially

monochromatic, capturing color images requires separate sensors for each color com-

ponent. However, due to cost considerations, in most digital cameras, only a single

sensor is used along with a color filter array (CFA). The CFA arranges pixels in a

pattern so that each element has a different spectral filter. Hence, each element only

senses one band of wavelength, and the raw image collected from the imaging sen-

sor is a mosaic of different colors and varying intensity values. The CFA patterns

are most generally comprised of red-green-blue (RGB) and cyan-magenta-yellow

(CMY) color components. The measured color values are passed to a digital image

processor which performs a number of operations to produce a visually pleasing

image. As each sub-partition of pixels only provide information about a number of

color component values, the missing color values for each pixel need to be obtained

through demosaicing operation. This is followed by other forms of processing like

white point correction, image sharpening, aperture correction, gamma correction

and compression. Although the operations and stages explained here are standard

stages in a digital camera pipeline, the exact processing detail in each stage varies

from one manufacturer to the other, and even in different camera models manufac-

tured by the same company.

Scanner Pipeline: Conventional consumer scanners are composed of a glass pane,

a bright light source (often xenon or cold cathode fluorescent) which illuminates the

pane from underneath, and a moving scan head that includes lenses, mirrors, a set

of filters, and the imaging sensor, whether CCD, CMOS or contact image sensors

(CIS).4 (Drum scanners which have been typically used for high-end applications

use photomultiplier tubes.) To obtain color scans, typically, three rows (arrays) of

sensors with red, green, and blue filters are utilized. During scanning, the imaging

sensor and light source move across the pane (linear motion). The light strikes the

image, reflects, and is then reflected by a series of mirrors to the scanner lens.

The light passes through the lens and is focused onto imaging sensors to be later

digitized. The resolution of a scanner depends on both the number of elements of

the imaging sensor (horizontal resolution) and the step size of the scan head motor

(vertical resolution). The hardware resolution of the scanner can be reduced down

by either down-sampling or less commonly through activating only some elements
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of the CCD array.

2.2. Source Model Identification

The work in this field has been primarily focused on digital cameras. The features

that are used to differentiate camera-models are derived based on the differences

in processing techniques and the component technologies. For example, the optical

distortions due to a type of lens, the size of the imaging sensor, the choice of CFA and

the corresponding demosaicing algorithm, and color processing algorithms can be

detected and quantitatively characterized by analysis of the image. The deficiency

of this methodology, in general, is that many models and brands use components by

a few manufacturers, and processing steps/algorithms remain same or very similar

among different models of a brand. Hence, reliable identification of a source camera-

model depends on characterization of various model dependent features as briefly

explained below.

2.2.1. Image Features

Inspired by the success of universal steganalysis techniques, Kharrazi et al.5 pro-

posed a similar approach to identify source camera-model. In essence, a select num-

ber of features designed to detect post-processing are incorporated with new fea-

tures to fingerprint camera-models. The 34 features include color features (e.g.,

deviations from gray world assumption, inter-band correlations, gamma factor esti-

mates), image quality metrics, and wavelet coefficient statistics. These features are

then used to construct multi-class classifiers. The results obtained on moderate to

low compressed images taken by 4 different camera-models yielded an identification

accuracy of 97%. When experiments are repeated on five cameras where three of

them are of the same brand, the accuracy is measured to be 88%. Tsai et al.6 later

repeated this study using a different set of cameras and reported similar results.

In their work,7 Celiktutan et al. took a similar approach to differentiate between

cell-phone camera-models by deploying binary similarity measures as features.8 In

this case, the identification accuracy among nine cell-phone models (of four differ-

ent brands) is determined as 83%. There are two main concerns regarding this type

of approaches. First is that as they provide an overall decision, it is not clear as

to what specific feature enables identification which is very important in forensic

investigations and in expert witness testimonies. Second concern is the scalability

of performance with the increasing number of digital cameras in the presence of

hundreds of digital cameras. Hence, in general, this approach is more suitable as a

pre-processing technique to cluster images taken by cameras with similar compo-

nents and processing algorithms.
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2.2.2. CFA and Demosaicing Artifacts

The choice of CFA and the specifics of the demosacing algorithm are some of the

most pronounced differences among different digital camera-models. In digital cam-

eras with single imaging sensors, the use of demosacing algorithms is crucial for

correct rendering of high spatial frequency image details, and it uniquely impacts

the edge and color quality of an image. Essentially, demosaicing is a form of inter-

polation which in effect introduces a specific type of inter-dependency (correlations)

between color values of image pixels. The specific form of these dependencies can

be extracted from the images to fingerprint different demosaicing algorithms and to

determine the source camera-model of an image. In,9 Popescu et al. demonstrated

that expectation/maximization (EM) algorithm can be used to estimate the (lin-

ear interpolation) filter coefficients by re-interpolating digital camera images (after

down-sampling to remove existing traces of interpolation) with eight different CFA

interpolation algorithms. The average accuracy in pair-wise differentiation over all

pairs of interpolation algorithms is obtained as 97%. To fingerprint demosaicing

algorithms used in different digital camera-models Bayram et al.10,11 deployed EM

algorithm, assuming a linear model for interpolation within a 5x5 window, and ana-

lyzed patterns of periodicity in second order derivates of rows and columns of pixels

in moderately smooth and very smooth image parts, respectively. The estimated

filter coefficients and the periodicity features are used as features in construction of

classifiers to detect source camera-model. The accuracy in identifying the source of

an image among four and five camera-models is measured as 86% and 78%, respec-

tively, using images captured under automatic settings and at highest compression

quality levels.

Alternatively, Long et al.12 considered analyzing the modeling error due to the

linear interpolation model and identifying demosaicing algorithm based on the char-

acteristics of this error, rather than using the estimated interpolation filter coeffi-

cients. (I.e., the difference between the actual pixel values in the image and their

reconstructed versions as a weighted sum of 13 neighboring pixels.) They realized

this by computing the autocorrelation of the error over all image. Then, the (13x13)

autocorrelation matrices obtained from many images are combined together and

subjected to principal component analysis to determine the most important com-

ponents which are then used as features in building a classifier. They reported that

an accuracy of more than 95% can be achieved in identifying the source of an image

among four camera-models and a class of synthetic images and studied the change

in performance under compression, noise addition, gamma correction and median

filtering types of processing.

Later, Swaminathan et al.13 enhanced this approach by first assuming a CFA

pattern, thereby discriminating between the interpolated and un-interpolated pixel

locations and values—an advantage over EM algorithm, and estimating the inter-

polation filter coefficients corresponding to that pattern (assuming a linear model

within a 7x7 window) for each of three activity regions, e.g., smooth, horizontal gra-
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dient, and vertical gradient. Then, the un-interpolated color values are interpolated

with respect to the assumed CFA pattern with the obtained filter and the error

with the resulting newly interpolated image and the actual image is computed. The

CFA pattern of an image is determined by searching over all valid CFA patterns

to minimize the resulting error, and the demosaicing algorithms are differentiated

through the use of classifiers built based on estimated filter coefficients. The corre-

sponding identification accuracy is determined by applying the method to images

taken by 16 camera-models under different compression levels and it is reported to

be 84%.

2.2.3. Lens Distortions

In their work,14 Choi et al. proposed the utilization of lens radial distortion, which

deforms the whole image by causing straight lines in object space to be rendered

as curved lines. Radial distortion is due to the change in the image magnification

with increasing distance from the optical axis, and it is more explicit in digital

cameras equipped with spherical surfaced lenses. Therefore, manufacturers try to

compensate for this by adjusting various parameters during image formation which

yields unique artifacts. To quantify these distortions, the paper extends a first-order

radial symmetric distortion model, which expresses undistorted radius (from optical

axis) as an infinite series of distorted radius, to second order. These parameters are

computed assuming a straight line model by first identifying line segments which

are supposed to be straight in the scene and computing the error between the

actual line segments and their ideal straight forms. Later, these parameters are

used as features to build classifiers in a framework similar to.5 The measurements

obtained from images captured with no manual zooming and flash and at best

compression level by three digital camera-models resulted with an identification

accuracy of approximately 91%. These features are also incorporated with those of

earlier proposed ones5 and similar overall identification accuracy is reported.

2.3. Individual Source Identification

The ability to match an image to its source requires identifying unique character-

istics of the source acquisition device. These characteristics may be in the form of

hardware and component imperfections, defects, or faults which might arise due

to inhomogeneity in the manufacturing process, manufacturing tolerances, environ-

mental effects, and operating conditions. For example, the aberrations produced by

a lens, noise in an imaging sensor, dust specks on a lens will introduce unique but

mostly imperceptible artifacts in images which can later be extracted to identify the

source of the image. The main challenge in this research direction is that reliable

measurement of these minute differences from a single image is very difficult and

they can be easily eclipsed by the image content itself. Another challenge is that

these artifacts tend to vary in time and depend on operating conditions. Therefore,

they may not always yield positive identification. Following approaches are proposed
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to utilize such characteristics in image source identification.

2.3.1. Imaging Sensor Imperfections

This class of approaches to source matching aims at identifying and extracting

systematic errors due to imaging sensor, which reveal themselves on all images

acquired by the sensor in a way independent of the scene content. These errors

include sensor’s pixel defects and pattern noise which has two major components,

namely, fixed pattern noise and photo response non-uniformity noise. The initial

work in the field has been done by Kurusowa et al.15 in which fixed pattern noise

caused by dark currents in (video camera) imaging sensors is detected. Dark current

noise refers to differences in pixels when the sensor is not exposed to light and it

essentially behaves as an additive noise. Therefore, it can be easily compensated

within the camera by first capturing a dark frame and subtracting it from the

actual readings from the scene, thereby hindering the applicability of the approach.

Geradts et al.16 proposed matching the traces of defective pixels, e.g., hot pixels,

cold/dead pixels, pixel traps, cluster defects, for determining the source camera.

Their experiments on 12 cameras showed the uniqueness of the defect pattern and

also demonstrated the variability of the pattern with operating conditions. However,

ultimately, such defects also cannot be reliably used in source identification as most

cameras deploy mechanism to detect such defects and compensate them through

post-processing.

The most promising and reliable approach in this field is proposed by Lukas et

al.17 to detect the pixel non-uniformity noise, which is the dominant component of

the photo-response non-uniformity pattern noise arising due to different sensitivity

of pixels to light. The main distinction of this approach as compared to earlier ones is

that the correction of this noise component requires an operation called flat-fielding

which in essence requires division of the sensor readings by a pattern extracted from

a uniformly lit scene before any non-linear operation is performed. Since obtaining

a uniform sensor illumination in camera is not trivial, most digital cameras do not

flat-field the resulting images. The key idea of the method is to denoise the image

by wavelet based denoising algorithm so that the resulting noise residue contains

the needed noise components. However, since the underlying image model used in

denoising is an idealistic one the residue signal also contains contributions from

the actual image signal. Hence to eliminate the random component of the noise,

denoising is applied to a set of images (captured by the same camera) and the

corresponding noise residues are averaged to obtain the reference pattern of a given

digital camera. Later, to determine whether a given image is captured by a digital

camera, the noise pattern extracted from the individual image is correlated with

the reference pattern of the digital camera. A decision is made by comparing the

measured correlation statistic to a pre-determined decision threshold. The results

obtained from (high quality) images taken by 9 cameras yielded 100% identification

accuracy.
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To determine the false-positive and true-detection performance of the scheme

proposed in17 under a more realistic setting Sutcu et al.18 performed experiments

on an image dataset with roughly 50K randomly selected images and observed

that some of the tested cameras yield false-positive rates much higher than the

expected values. To compensate for false-positives the authors proposed coupling

the approach of17 with source-model identification methodology. In this case, during

the extraction of the pattern the demosaicing characteristics of the source camera-

model are also determined as described in.11 When a decision is to be made in

matching an image to a potential source camera, it is also required that the class

properties of the camera extracted from the individual image is also in agreement

with those of the source camera. It is shown that this approach is very effective

in reducing the false-positive rate with a marginal reduction in the true-detection

rate. In,19 Fridrich et al. proposed enhancements to the noise extraction scheme by

deploying pre-processing techniques to reduce the contributions of image noise and

to gain robustness against compression.

Khanna et al.20,21 extended sensor noise extraction methodology to also include

scanned images and to enable source scanner identification. The main difference

between the imaging sensors deployed in digital camera and (flatbed) scanners is

that in the former sensor is a two-dimensional array, whereas in the latter it is

a one-dimensional linear array, and a scan is generated by translating the sensor

over the image. As a result the noise pattern extracted from a scanned image is

expected to repeat itself over all rows. Therefore, a row reference noise pattern

can be obtained from a single scanned image by averaging the extracted noise (via

denoising) over all rows. In [20], the authors showed that this difference in the di-

mension of the array can be used to distinguish between digital camera and scanner

images. In realizing this, classifiers are built based on (seven) statistics computed

from averaged row and column reference patterns extracted from both scanned im-

ages at hardware resolution (e.g., no down-sampling) and digital camera images. In

experiments, various training scenarios are considered and an average accuracy of

more than 95% is achieved in discriminating digital camera images from scanned

images. The methodology is also applied to source scanner identification problem

with the inclusion of new features in classifier design.21 When identifying the source

scanner of an image among four scanners an average classification accuracy of 96%

is achieved and when the images are compressed with JPEG quality factor 90 an

accuracy of 85% is obtained.

Gou et al.22 proposed another approach to fingerprint the scanning noise associ-

ated with different models of (flatbed) scanners. The method characterizes scanning

noise by three sets of features. The first set of features are obtained by denoising the

scanned images and obtaining first and second order moments of the log-absolute

transformed version of the noise residue. The second set of features are obtained as

the mean, variance and error due to fitting normal distributions to high frequency

sub-band coefficients of one-level wavelet decomposed version of the (normalized)

scanned image. The third set consists of features extracted from the first two mo-
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ments of prediction error applied to smooth regions. The most distinctive of the

resulting 60 features are used to construct classifiers, which yielded an identifica-

tion accuracy of 90% among seven scanner models with relatively smaller size of

datasets (27 uncompressed images per model). The distinguishability of the features

are also compared to wavelet coefficient statistics23 and image quality metrics24 and

shown to be better. In the context of scanner identification, one issue that needs to

be further studied is the variability of scanner noise among individual scanners and

determining the corresponding false-alarm rates in identifying the source scanner.

2.3.2. Sensor Dust Characteristics

Dirik et al.25 proposed another method for source camera identification based on

sensor dust characteristics of single digital single-lens reflex (DSLR) cameras which

are becoming increasingly popular because of their interchangeable lenses. Essen-

tially, the sensor dust problem emerges when the lens is removed and the sensor area

is opened to the hazards of dust and moisture which are attracted to the imaging

sensor due to electrostatic fields, causing a unique dust pattern before the surface

of the sensor. Sensor dust problem is persistent and most generally the patterns

are not visually very significant. Therefore, traces of dust specks can be used for

two purposes: to differentiate images taken by cheaper consumer level cameras and

DSLR cameras and to associate an image with a particular DSLR camera. However,

it should be noted that the lack of a match between dust patterns does not indi-

cate anything since the dust specks might have been cleaned. Devising an empirical

dust model characterized by intensity loss and roundness properties; the authors

proposed a technique to detect noise specks on images through match filtering and

contour analysis. This information is used in generation of a camera dust reference

pattern which is later checked in individual images. In the experiments, ten images

obtained from three DSLR cameras are used in generating a reference pattern which

is then tested on a mixed set of 80 images (20 taken with the same camera and 60

with other cameras) yielding an average accuracy of 92% in matching the source

with no false-positives.

3. Identification of Synthetic Images

A great deal of progress has been made in both fields of computer vision and com-

puter graphics and these two fields have now begun to converge very rapidly. Con-

sequently, more realistic synthetic imagery became achievable. Today, generative

algorithms are able to produce realistic models of natural phenomena, e.g., waves,

mountains, sky, plants, objects with geometric structure, stimulate the behavior of

light, e.g., ray tracing and subsurface scattering methods, and take into considera-

tion sensitivities of human perceptual system. Moreover, the sophistication of these

algorithms parallels the increasing computation power. These advances in a way

defeat the whole purpose of imagery and put the credibility of digital imagery at

stake. Therefore, distinguishing photo-realistic computer generated (PRCG) images
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from real (natural) images is a very challenging and immediate problem. Several

approaches have been proposed to address this problem. Essentially, all proposed

approaches are based on machine learning methods, which express the relations be-

tween features extracted from a sample set of PRCG and real images in the form

of classifiers. These classifiers are later used to differentiate between the two types

of images. Hence, the main difference between the proposed approaches lie in the

features they use in constructing the classifiers. Another concern with this class of

methods is the image sets used during training and test phases as the true perfor-

mance of the method will depend on how well their characteristics represent the

overall class of images they belong to.

The first approach to differentiating natural (photographic) images from PRCG

images was proposed by Lyu et al.26 based primarily on a model of natural images.

In this technique, the features are designed to capture the statistical regularities of

natural images in terms of statistics of three-level discrete wavelet transform coef-

ficients. The features include first order statistics (e.g., mean, variance, skewness,

and kurtosis) of both sub-band coefficients at each orientation and scale and of the

errors in a linear predictor of coefficient magnitude (of all spatial, scale, orientation,

and color neighbors) to capture higher order statistical correlations across space,

scales and orientations, resulting with 72 features in each color band. The exper-

iments are done on 40K real and 6K PRCG images of which 32K+4.8K images

were used for training the classifiers and the rest for the testing which yielded an

identification accuracy of 67% at 1% false-alarm rate.

In their work,27 Ng et al. proposed another promising approach based on identi-

fying the distinctive (geometry-based) characteristics of PRCG images, as compared

to natural images. Their technique takes into account the differences in surface and

object models and differences in the acquisition process between the PRCG and

real images. The selection of their features is motivated by the observations that

generation of PRCG images, mostly due to issues of computational complexity, is

based on polygonal surface models and simplified light transport models, and does

not exhibit acquisition characteristics of hardware device e.g., cameras and scan-

ners. The 192 features used in the design of the classifier are extracted by analyzing

local patch statistics, local fractal dimension, and (normalized) differential geome-

try quantities, e.g., surface gradient, quadratic geometry, and Beltrami flow. The

authors used 800 PRCG images and 1.6K real images to test their features and

obtained an average identification accuracy of 83% in comparison to an accuracy

of 80% by Lyu et al.’s features.26 It is also shown that when classifiers are trained

to identify the CG images that are captured by digital cameras (i.e., recapturing

attack), a similar performance can be achieved by both feature sets.

Another wavelet transform based method was proposed by Wang et al.28 where

features are obtained from characteristic functions of wavelet-coefficient histograms.

The features are obtained by first applying three-level wavelet decomposition at each

color channel and further decomposing the diagonal sub-band into four second-level

sub-bands, yielding a total of 48 sub-bands, and then by obtaining the normalized
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histograms in each sub-band. The DFT transform of the normalized histograms are

filtered by three filters (two high-pass filters and a band-pass filter) to determine

their energy at different frequency component ranges. Hence, a total of 144 features

are obtained. The classifier trained on half of the 4.5K natural and 3.8K PRCG im-

ages yielded detection and false-positive results comparable to those of.26 However,

it is reported the classifier did not perform uniformly (much higher false-alarm rate)

on the dataset used by in.27

Motivated by the fact that majority of the real images are captured by digital

cameras, Dehnie et al.29 presented an approach that aims at discriminating synthetic

images from digital camera images based on the lack of artifacts due to acquisition

process by focusing on the imaging sensor’s pattern noise. Although each digital

camera has a unique noise pattern,17 since the underlying sensor technology remains

similar, it is very likely that pattern noise introduced by different digital cameras

may have common statistical properties. On the other hand, to avoid lack of real-life

details, such as textures and lighting, generation of PRCG requires methods that

add noise to simulate such phenomena in a physically consistent manner, e.g., ray

tracing algorithms. Similarly, it is very likely that the noise introduced by these

methods to have certain statistical properties. To test the discriminative ability of

the approach, a 600 PRCG images and more than 600 digital camera images have

been denoised and the statistics of the resulting noise residues are analyzed. It is

shown that the first-order statistics, like skewness and kurtosis, for the two noise

components are distinct and the two types of image can be discriminated with an

average accuracy of 75%.

Later, Dirik et al.30 extended this approach to also include demosaicing arti-

facts11 by proposing new features to detect the use of Bayer color filter array during

demosaicing and and to detect traces of chromatic aberration. These features are

later incorporated with the features of26 and tested on 1.8 K PRCG and digital

camera images half of which were used for training. Test results obtained on high

quality images show that the classifier designed based on only four demosaicing

features perform as good as wavelet transform coefficient statistics based features

alone.26 The results obtained from both high quality and medium level compressed

images show that On the other hand, the proposed single feature based on traces

chromatic aberration is shown to perform slightly worse but with less sensitivity

to compression in highh to medium compression levels. The results for combined

features show that the proposed five features can further improve the performance

of the existing methods.

4. Image Forgery Detection

Due to the ease with which digital images can be altered and manipulated us-

ing widely available software tools, forgery detection is a primary goal in image

forensics. An image can be tampered in many ways and at varying degrees, like

compositing, re-touching, enhancing, with various intents. Although, many of the
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tampering operations generate images with no visual artifacts, they will, neverthe-

less affect the inherent statistics of the image. Furthermore, the process of image

manipulation very often involves a sequence of processing steps to produce visually

consistent images. Typically, a forged image (or parts of it) would have undergone

some common image processing operations like affine transformations (e.g., scaling,

rotation, shearing), compensation for color and brightness variations, and suppres-

sion of details (e.g., filtering, compression, noise addition). As a result, it is very

likely that tampered image statistics will also exhibit variations due to such opera-

tions. In what follows, we briefly review various techniques proposed to determine

whether the image has undergone any form of modification or processing after it

has been captured.

4.1. Variations in Image Features

These approaches designate a set of features that are sensitive to image tampering

and determine the ground truth for these features by analysis of original (unal-

tered) and tampered images. These values are stored as reference values and later

tampering in an image is decided based on deviation of the measured features from

the ground truth. These approaches most generally rely on classifiers in making

decisions. For example, to exploit the similarity between the steganalysis and im-

age manipulation detection, Avcibas et al.31 proposed an approach similar to24 by

utilizing image quality metrics to probe different quality aspects of images, which

could be impacted during tampering. In,24 image quality metrics are used in coop-

eration with classifiers to differentiate between original and altered images based on

measures obtained between a supposedly modified image and its estimated original

(obtained through denoising) in terms of pixel and block level differences, edge dis-

tortions, and spectral phase distortions. To ensure that the features respond only

to induced distortions due to tampering and not be confused by the variations in

the image content, in31 metrics are also measured with respect to a fixed set of

images. Results obtained on 200 images by subjecting them to various image pro-

cessing operations at a global scale yielded an average accuracy of 80%. When the

same classifiers are given 60 skillfully tampered images, the detection accuracy is

obtained to be 74%.

Based on the observation that non-linear processing of a signal very often in-

troduced higher-order correlations, Ng. et al.32 studied the effects image splicing

on magnitude and phase characteristics of bicoherence spectrum (i.e., normalized

bispectrum which is the Fourier transform of the third order moment of a signal).

The authors modeled the discontinuity introduced at the splicing point as a per-

turbation of a smooth signal with a bipolar signal and showed that bipolar signals

contribute to changes in bicoherence spectrum of a signal. When tested the mag-

nitude and phase features provided a classification accuracy of 62% which can be

attributed to strong higher order correlations exhibited by natural images. Later,33

the authors augmented the existing bicoherence features with newer ones that take
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into consideration the sensitivity of bicoherence to edge pixel density and the vari-

ation in bicoherece features between the spliced and un-spliced parts of the image.

With the inclusion of the new features the accuracy in splicing detection is reported

to increase to 72%. Bayram et al.34,35 compiled three fundamental sets of features

that have been successfully used in universal steganalysis and rigorously tested their

sensitivity in detecting various common image processing operations by construct-

ing classifiers to identify images that have undergone such processing. The tested

features include image quality metrics,24 wavelet coefficient statistics,23 binary sim-

ilarity measures,8 the joint feature set which combines all the three sets, and the

core feature set which is a reduced version of joint feature set. Different types of

classifiers built from these features are tested under various image manipulations,

like scaling up/down, rotation, contrast enhancement, brightness adjustment, blur-

ring/sharpening and combinations, with varying parameters. Results on 100 locally

tampered images, obtained from Internet, show that joint feature set performs best

with an identification accuracy of around 90%.

4.2. Image Feature Inconsistencies

This class of techniques tries to detect image tampering based on inconsistent vari-

ations of selected features across the image. These variations may be in the form of

abrupt deviations from the image norm or unexpected similarities over the image.

One of the earliest methods in this class exploits the presence of double JPEG com-

pression artifacts. Recompression of an (already compressed) image at a different

quality factor distorts the smoothness of DCT coefficient histograms and creates

identifiable patterns in DCT coefficient histograms. When the second quantization

step size is smaller, some bins in the resulting histogram will be empty (zero val-

ued) yielding a periodic peaks-and-valleys pattern. On the other hand, if the second

quantization step is larger than the first one, all histogram values will be present

but due to uneven splitting and merging of bins, histogram will show periodic peak

patterns.

This phenomenon has been observed and studied in36 and37 to determine the

initial compression parameters and to detect double compressed images. Essentially,

the most common form of image tampering involves splicing of images which are

very likely to be compressed at different quality factors. Therefore, the spliced parts

in the recompressed image will have different double compression characteristics as

compared to other parts. He et al.38 developed a workable algorithm for automati-

cally locating the tampered parts. In the method, the coefficient histogram of each

DCT channel is analyzed for double compression effects and to assign probabilities

to each (8x8) DCT block of its being a doctored block. The probabilities for each

block are later fused together to obtain normality map of blocks, and tampering

is decided based on presence and location of clusters on this map. Experiments

performed on a small number of tampered images demonstrate the success of the

algorithm. Further experiments are needed to determine how the method performs



September 25, 2007 13:36 WSPC - Proceedings Trim Size: 9.75in x 6.5in sencar-memon-chapter

15

under various types of image tampering.

Popescu et al.39 proposed a method for detecting resized (parts of) images which

might potentially indicate image tampering. The principle of their method is based

on the fact that up-sampling (interpolation) operation introduces periodic inter-

coefficient correlations (i.e., all interpolated coefficients depend on their neighbors

in the same manner) and re-sampling at arbitrary rates requires a combination of

up-sampling and down-sampling operations to achieve the intended rate. Hence,

the presence of correlation between pixels can be used to determine which parts of

images underwent resizing. To extract the specific form of correlations, the authors

assumed probabilistic models for the prediction errors of both interpolated and un-

interpolated coefficients. The estimation of distribution parameters and grouping

of coefficients are performed simultaneously by EM algorithm. Results obtained on

high quality JPEG images by subjecting images to global transformations such as

scaling, rotations and gamma correction yielded detection accuracy close to 100%

in most cases. However, the accuracy of detecting locally tampered regions have to

be further tested.

Johnson et al.40 considered the use of lighting direction inconsistencies across

an image to detect image tampering, as it is often difficult to ensure (physically)

consistent lighting effects. The crux of the method lies in a technique that esti-

mates the light source direction from a single image. Assuming a point light source

infinitely far away, a surface that reflects light isotropically and has a constant re-

flectance, and the angle between the surface normal and the light direction is less

than 90 degrees, the image intensity is expressed a function of surface normal, light

source direction, and constants (i.e., reflectance and ambient light terms). Surfaces

of known geometry in the image (e.g., plane, sphere, cylinder, etc.) in the image

are partitioned into many patches and by solving the formulation for all patches

and combining the results to obtain the light direction. Formulation is also applied

to local light sources and multiple light sources by combining them into a single

virtual light source. The applicability of the method is demonstrated on a smaller

set of images.

Image tampering very often involves local sharpness/blurriness adjustments.

Hence, the blurriness characteristics in the tampered parts are expected to differ

in non-tampered parts. In,41 Sutcu et al. proposed the use of regularity properties

of wavelet transform coefficients to estimate sharpness/blurriness of edges to detect

variations and to localize tampering. The decay of wavelet transform coefficients

across scales has been employed for edge detection and quality estimation purposes

previously. The proposed method first employs an edge detection algorithm to deter-

mine edge locations which is then followed by a multi-scale wavelet decomposition

of the image. Edge locations are located by analyzing the edge image and corre-

sponding maximum amplitude values of wavelet sub-band signals are determined.

Then, a linear curve is fitted to the log of these maximum amplitude values and the

goodness of the fit is used an indicator of sharpness/blurriness value. The potential

of the method in detecting variations in sharpness/blurriness is demonstrated on
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both globally blurred images and tampered images with local adjustments.

Another common form of forgery is content repetition which involves copying

and pasting part(s) of an image over other parts of the same image to disguise some

(contextual) details in the image. Although this type of tampering can be easily

detected by exhaustive search and analysis of correlation properties of the image

(autocorrelation function) due to introduced correlation by content repetition, these

methods are not computationally practical and do not perform well when the copied

pasted parts are smaller in region. To address this problem Fridrich et al.42 pro-

posed a better performing (faster and accurate) method. The method obtains DCT

coefficients from a window that is slid over the whole image in an overlapping man-

ner and quantizes them. The resulting coefficients are arranged and inserted into a

row matrix. The rows (of quantized DCT coefficients) are then sorted in a lexico-

graphical order and through row-wise comparisons similar blocks are determined.

The main computational cost of this algorithm is due to sorting which requires

significantly less time steps as compared to brute force search, e.g., an O(nlogn)

algorithm. To further improve the robustness of this method to possible variations

Popesctu et al.43 used an alternative representation of blocks based on principal

component analysis to identify the similar blocks in the image. Similar to,41 the co-

efficients in each block are vectorized and inserted in a matrix and the corresponding

covariance matrix is computed. By finding the eigenvectors of the covariance ma-

trix, a new linear basis for each image block is obtained and a new representation

is obtained by projecting each image block onto selected basis vectors with higher

eigenvalues to reduce dimensionality. Then, the representation of each block is lexi-

cographically sorted and compared to determine the similar blocks. The robustness

of the method in detecting tampered parts is demonstrated under ranging JPEG

compression qualities and additive noise levels.

4.3. Inconsistencies Concerning Acquisition Process

As discussed earlier, image acquisition process introduces certain distinguishing

characteristics in each acquired image which can be used for source identification.

Since these characteristics will be fairly uniform over the whole image, their con-

sistency across the image can also be used for detecting and localizing tampering.

Hence, this group of techniques is extensions of source identification techniques with

some minor differences. For example, Swaminathan et al.44 used inconsistencies in

color filter array interpolation to detect tampered parts of an image based on their

approach in.13 After estimating the CFA pattern and the interpolation filter, the

demosaiced image is reconstructed and compared to the image itself. Modeling the

linear part of the post-processing as a tampering filter, its coefficients are obtained

by deconvolution. These coefficients are then used in design of a classifier to detect

tampering by comparing the obtained filter coefficients with a reference pattern

obtained from direct camera output (i.e., unaltered images). Results obtained by

subjecting test images to spatial averaging, rotation, compression and resampling



September 25, 2007 13:36 WSPC - Proceedings Trim Size: 9.75in x 6.5in sencar-memon-chapter

17

is reported to yield average detection accuracy of more than 90%.

Similarly, based on,17 Lukas et al. proposed to detect and localize tampering by

analyzing the inconsistencies in the sensor pattern noise extracted from an image.45

The noise patterns obtained from various regions are correlated with the corre-

sponding regions in the camera’s reference pattern and a decision is made based on

comparison of correlation results of region of interest (potentially tampered region)

with those of other regions. Along the same line Popescu et al.46 proposed to detect

the presence of CFA interpolation, as described in,9 in overlapping blocks of an

image to detect tampering. Experiments were performed on a limited number of

digital camera images to identify traces of CFA interpolation in each block with no

tampering.

Johnson et al.47 proposed a new approach by inspecting inconsistencies in lateral

chromatic aberration as a sign of tampering. Lateral aberration is due to inability

of the lens to perfectly focus light of all wavelengths onto imaging sensor, causing

a misalignment between color channels that worsens with the distance from the

optical center. The method treats the misalignment between color channels as an

expansion (or contraction) of a color channel with respect to one another and tries

to estimate the model parameters (e.g., center and aberration constant) to attain

alignment. The estimation of these model parameters is framed as an image regis-

tration problem and a mutual entropy metric is used to find the exact aberration

constant which gives the highest mutual entropy between color channels. To detect

tampering, image is partitioned into blocks and the aberration estimated in each

block is compared to global estimate. Any block that deviates significantly from the

global estimate is deemed to be tampered. The threshold deviation is determined

experimentally under varying compression qualities; however, further experiments

are needed to generalize the results and determine the dependency on image content.

Alternatively, Lin et al.48 proposed a method to recover the response function

of the camera by analyzing the edges in different patches of the image and verifying

their consistency. Camera response function defines the relation between radiance

values from the scene and measured brightness values in each color channel and

due to this non-linear response a linear variation of the pixel irradiance at the

edges will be distorted. The main idea of the method is to utilize this phenomenon

by computing the inverse response function and to determine its conformance to

known properties of response functions (which should be monotonically increasing

with at most one inflexion point and similar to each other in each color channel). The

normality of the estimated functions, from each patch, is decided by comparing them

to a database of known camera response functions. For this, classifiers are designed

by extracting features from the computed and available response functions and

tested on a few example images to demonstrate the feasibility of the idea. Although

the success of the method requires images to be of high contrast so that the color

range in each patch is wide enough, this assumption can be relaxed by applying the

method to source camera-model identification problem.
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5. Conclusions and Outlook

There is a growing need for digital image forensics techniques, and many techniques

have been proposed to address various aspects of digital image forensics problem.

Although many of these techniques are very promising and innovative, they all have

limitations and none of them by itself offers a definitive solution. Ultimately, these

techniques have to be incorporated together to obtain reliable decisions. However,

there are still two major challenges to be met by image forensics research.

• Performance Evaluation and Benchmarking. Essentially the foremost concern

that arises with respect to forensic use of proposed techniques is the achievable

performance in terms of false-alarm and true-detection/identification rates and

clear understanding of the factors that affect the performance. From this point

of view, many of the proposed techniques can be more accurately defined as

proof of concept experiments. To further refine these methods, performance

merits have to be defined more clearly and proper test and evaluation datasets

have to be designed and shared.

• Robustness Issues. The most challenging issue that image forensics research

faces is the robustness to various common and malicious image processing op-

erations. Proposed methods are not designed and tested rigorously to perform

under the most difficult conditions, and, moreover, most techniques can be eas-

ily circumvented by a novice manipulator. Since the information utilized by the

image forensics techniques is mostly in imperceptible detail, it can be easily

removed. It is a matter of time for such tools to be available for public use.

Techniques have to be designed and evaluated with this caveat in mind.

Overcoming these challenges requires the development of several novel methodolo-

gies and thorough evaluation of their limitations under more general and practical

settings. This can be achieved in collaboration with forensics experts and through

their continuous feedback on the developed methods. The research effort in the field

is progressing well in these directions.
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