Constraint Satisfaction Problems

Chapter 5
Sections 1 – 3
Constraint satisfaction problems (CSPs)

- **Standard search problem:**
 - state is a "black box" – any data structure that supports successor function, heuristic function, and goal test.

- **CSP:**
 - state is defined by variables X_i with values from domain D_i.
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables.

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms.
Example: Map-Coloring

- **Variables**: WA, NT, Q, NSW, V, SA, T
- **Domains**: $D_i = \{\text{red, green, blue}\}$
- **Constraints**: adjacent regions must have different colors
 - e.g., $WA \neq NT$, or (WA, NT) in $\{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})\}$
Example: Map-Coloring

- Acceptable solutions are complete and consistent assignments, e.g., one possible solution is WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Constraint graph

- **Binary CSP:** each constraint relates two variables
- **Constraint graph:** nodes are variables, arcs are constraints
Varieties of CSPs

- **Discrete variables**
 - finite domains:
 - n variables, each with domain size d, implies $O(d^n)$ complete assignments
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $\text{StartJob}_1 + 5 \leq \text{StartJob}_3$

- **Continuous variables**
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., $SA \neq \text{green}$

- **Binary** constraints involve pairs of variables,
 - e.g., $SA \neq WA$

- **Higher-order** constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
Example: Cryptarithmetic

- **Variables:** \(F, T, U, W, R, O, X_1, X_2, X_3 \)
- **Domains:** \{0,1,2,3,4,5,6,7,8,9\}
- **Constraints:** \(\text{Alldiff} \ (F, T, U, W, R, O) \)
 - \(O + O = R + 10 \cdot X_1 \)
 - \(X_1 + W + W = U + 10 \cdot X_2 \)
 - \(X_2 + T + T = O + 10 \cdot X_3 \)
 - \(X_3 = F, \ T \neq 0, \ F \neq 0 \)
Real-world CSPs

- **Assignment problems**
 - e.g., who teaches what class
- **Timetabling problems**
 - e.g., which class is offered when and where?
- **Transportation scheduling**
- **Factory scheduling**
- Notice that many real-world problems involve real-valued variables
Let's start with the straightforward approach, then improve upon it.

States are defined by the values assigned so far.

- **Initial state**: the empty assignment \{ \}
- **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment
 - fail if no legal assignment is available
- **Goal test**: the current assignment is complete

1. The above formulation is the same for all CSPs
2. Every solution appears at depth \(n \) with all \(n \) variables assigned \(\rightarrow \) can use depth-first search
3. Path is irrelevant, so can also use complete-state formulation
4. \(b = (n - l)d \) at depth \(l \), hence \(n! \cdot d^n \) leaves
Backtracking search

- Variable assignments are commutative}, i.e.,
 \[WA = \text{red then NT = green} \] same as \[NT = \text{green then WA = red} \]

- Only need to consider assignments to a single variable at each level
 \(b = d \) and there are \(d^n \) leaves

- Depth-first search for CSPs with single-variable assignments is called backtracking search

- Backtracking search is the basic uninformed algorithm for CSPs

- Can solve \(n \)-queens for \(n \approx 25 \)
Backtracking search

```plaintext
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
    return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment according to Constraints[csp] then
            add {var = value} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, csp)
            if result ≠ failure then return result
            remove {var = value} from assignment
        return failure
```
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- **General-purpose** methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable

- **Most constrained variable:**
 - Choose the variable with the fewest legal values

- After WA and NT have been assigned, SA has only one legal value left, i.e. blue

- a.k.a. **minimum remaining values (MRV) heuristic**
Most constraining variable (Degree Heuristic)

- Tie-breaker among most constrained variables
- Most constraining variable: □
 - choose the variable with the most constraints on remaining variables □
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes solving \(n = 1,000 \) queens feasible
Forward checking

- **Idea:**
 - After a variable is assigned a value, update the remaining legal values of its neighbors
 - Terminate search when any variable has no legal values

![Diagram of Australia with states and colors]
Forward checking

Idea:
- After a variable is assigned a value, update the remaining legal values of its neighbors
- Terminate search when any variable has no legal values

```
WA NT Q NSW V SA T
| | | | | | | |
| | | | | | | |
| | | | | | | |
```
Forward checking

Idea:

- After a variable is assigned a value \(c \), update the remaining legal values of its neighbors (eliminate value \(c \) from the domain of its neighbors.)
- Terminate search when any variable has no legal values.

![Diagram of Forward checking](image)
Forward checking

Idea:

- After a variable is assigned a value, update the remaining legal values of its neighbors (eliminate value c from the domain of its neighbors.)
- Terminate search when any variable has no legal values.
Constraint propagation

- Forward checking propagates information from assigned to neighboring unassigned variables, but doesn't provide early detection for all failures:

 - NT and SA cannot both be blue!

- Constraint propagation repeatedly enforces constraints locally

![Diagram showing constraint propagation process]

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5 - Constraint Satisfaction 25
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y.
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc consistent.
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y.
- If X loses a value, neighbors of X need to be rechecked.
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
 - for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{Remove-First}(queue)\)
 if RM-INCONSISTENT-VALUES\((X_i, X_j)\) then
 for each \(X_k\) in NEIGHBORS\([X_i]\) do
 add \((X_k, X_i)\) to queue

function RM-INCONSISTENT-VALUES\((X_i, X_j)\) returns true iff remove a value
removed \(\leftarrow false\)
for each \(x\) in DOMAIN\([X_i]\) do
 if no value \(y\) in DOMAIN\([X_j]\) allows \((x, y)\) to satisfy constraint\((X_i, X_j)\) then delete \(x\) from DOMAIN\([X_i]\); removed \(\leftarrow true\)
return removed

- Time complexity: \(O(n^2d^3)\)
Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values

- Backtracking = depth-first search with one variable assigned per node

- Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies early