Anomaly detection through system call argument analysis

Stefano Zanero
Ph.D. Student, Politecnico di Milano
CTO & Founder, Secure Network S.r.l.

Black Hat Briefings – Las Vegas, Nevada, 02/08/06
Presentation Outline

- Building a case for Anomaly Detection Systems
 - Bear with me if you already heard this rant :)
 - Intrusion Detection Systems, not Software!
 - Why do we need Anomaly Detection?
- State of the art in host-based anomaly detection
 - System call sequence analysis (a lot of)
 - System call argument analysis (a few of)
- Combining both, along with other ingredients
- Detecting 0-day attacks: hope or hype?
- Conclusions
A huge problem, since 331 b.C.

- The defender's problem
 - The defender needs to plan for everything... the attacker needs just to hit one weak point
 - Being overconfident is fatal: King Darius vs. Alexander Magnus, at Gaugamela (331 b.C.)

- Acting *sensibly* is the key ("Beyond fear", by Bruce Schneier: a must read!)

- "The only difference between systems that can fail and systems that cannot possibly fail is that, when the latter actually fail, they fail in a totally devastating and unforeseen manner that is usually also impossible to repair" (Murphy's law on complex systems)
Murphy says: plan for the worst

- The mantra is: **plan for the worst** (and pray it will not get even worse than that) and act accordingly
- At the end of the day, we must keep in mind that every defensive system will, at some time, fail, so we must plan for failure
 - We must design systems to *withstand* attacks, and fail gracefully (failure-tolerance)
 - **We must design systems to be tamper evident** (detection)
 - We must design systems to be capable of recovery (reaction)
Tamper evidence and Intrusion Detection

- An information system must be designed for *tamper evidence* (because it *will* be broken into, sooner or later)

- An IDS is a *system* which is capable of detecting intrusion attempts on an *information system*
 - An IDS is a system, not a software!
 - An IDS works on an information system, not on a network!

- The so-called IDS software packages are a *component* of an intrusion detection system

- An IDS system usually closes its loop on a human being (who is an essential part of the system)
Breaking some hard-to-kill myths

- An IDS is a system, not a software
 - A skilled human looking at logs is an IDS
 - A skilled network admin looking at TCPdump is an IDS
 - A company maintaining and monitoring your firewall is an IDS
 - A box bought by a vendor and plugged into the network is not an IDS by itself
- An IDS is not a panacea, it’s a component
 - Does not substitute a firewall, nor it was designed to (despite what Gartner thinks)
 - It’s the last component to add to a security architecture, not the first
- Detection without reaction is a no-no
 - Like burglar alarms with no guards!
- Reaction without human supervision is a dream
 - “Network, defend thyself!”
Anomaly vs. misuse

Anomaly Detection Model
- Describes normal behaviour, and flags deviations
- Uses statistical or machine learning models of behaviour
- Theoretically able to recognize any attack, also 0-days
- Strongly dependent on the model, the metrics and the thresholds
- Generates statistical alerts: “Something’s wrong”

Misuse Detection Model
- Uses a knowledge base to recognize the attacks
- Can recognize only attacks for which a “signature” exists in the KB
- When new types of attacks are created, the language used to express the rules may not be expressive enough
- Problems for polymorphism
- The alerts are precise: they recognize a specific attack, giving out many useful informations
Misuse detection alone is an awful idea

- Misuse detection systems rely on a knowledge base (think of the anti-virus example, if it’s easier to grasp)
- Updates continuously needed, and not all the attacks become known (as opposed to viruses)
 - A misuse based IDS will not, in general, recognize a zero-day attack
- Attacks are polymorphs, more than computer viruses (human ingenuity vs computer program)
 - Think of ADMutate, UTF encoding…
 - A misuse based IDS will not, in general, recognize a new way to exploit an old attack, unless there is an unescapably necessary characteristic in the attack
- If we need intrusion detection as a complementary mean to patching and secure design, detecting known attacks is clearly not the solution
- Traditionally, network based IDS are mostly misuse based
Anomaly Detection, perhaps not better

- Task: describe the normal behaviour of a system
 - Which features/variables/metrics would you use?
 - Infinite models to fit them

- Thresholds must be chosen to minimize false positive vs. detection rate: a difficult process

- The base model is fundamental
 - If the attack shows up only in variables we discarded, or only in variations we do not check, we cannot detect it
 - Think of detecting oscillations when you just check the average of a variable on a window of time

- In any case, what we get as an alert is “hey, something’s wrong here”. What? Your guess!

- Difficult to be relied upon for automatic defense (i.e. IPS)
Our approach: unsupervised learning

- At the Politecnico di Milano Performance Evaluation lab we are working on anomaly-based intrusion detection systems capable of *unsupervised learning*
- What is a learning algorithm?
 - It is an algorithm whose performances grow over time
 - It can extract information from training data
- Supervised algorithms learn on labeled training data
 - “This is a good event, this is not good”
 - Think of your favorite bayesian anti-spam filter
 - It is a form of generalized misuse detection
- Unsupervised algorithms learn on unlabeled data
 - They can “learn” the normal behavior of a system and detect variations (remembers something ... ?)
- We have already presented in past our *network based IDS*, we are presenting today our *host based IDS*
Host-based, anomaly based IDS have a long academic tradition, and there's a gazillion papers on them.

Let us focus on one observed feature: the sequence of system calls executed by a process during its life.

Assumption: this sequence can be characterized, and abnormal deviations of the process execution can be detected.

Earlier studied focused on the sequence of calls:

- Used markovian algorithms, wavelets, neural networks, finite state automata, N-grams, whatever, but just on the sequence of calls.
- Markov models comprise other models.

An interesting and different approach was introduced by Vigna et al. with “SyscallAnomaly/LibAnomaly”, but we'll see that in due time.
Time series learning

- A time series is a sequence of observations on a variable made over some time
- If a syscall is an observation, then a program is a time series of syscalls
- If our observations are descriptive of the behavior of systems... attacks probably are outliers
 - An outlier is an observation that deviates so much from other observations as to arouse suspicions that it was generated from a different mechanism
- What is an outlier in a time series?
 - Traditional definitions are based on wavelet transforms but are not adequate for categorical values such as ours
- Markov chains give us an approach
What is a Markov chain?

- A stochastic process is a finite-state, k-th order Markov chain if it has:
 - A finite number of states
 - The Markovian property (probability of next state depends only on *k most recent states*)
 - Stationary transition probabilities (i.e. they do not change with time)

- Probabilities, in a first-order chain with *s* states can be expressed as a matrix with *s* rows and cols
 - In *n*-th order, with a matrix with *s^n* rows and cols

- Chain is irreducible if all states are reachable
 - Transient, recurrent and absorbing states

- They comprise other models
 - N-grams are simplified n-th order markov chains
An example of Markov chain

Markov Chain Models

Transition probabilities

\[
\begin{align*}
\Pr(x_i = a \mid x_{i-1} = g) &= 0.16 \\
\Pr(x_i = c \mid x_{i-1} = g) &= 0.34 \\
\Pr(x_i = g \mid x_{i-1} = g) &= 0.38 \\
\Pr(x_i = t \mid x_{i-1} = g) &= 0.12
\end{align*}
\]
Training a Markov chain

- We can compute the likelihood of a sequence in a model with a simple conditional probability.
- We can build the model which fits a given sequence or set of sequences by calculating the maximum likelihood model, the one which gives the various observations the maximum probability.
- Can be done through simple calculations (problem of null probabilities), or through Bayesian ones.
- Comparison of probability of sequences of different length is difficult (can use the logarithm or other tricks to smooth).
Which Markov chain does this fit?

- **Simple answer:** you compute the likelihood
- **If you need to compare multiple models, this is more complex**
 - You need to take into account the prior probability, or probability of the model, since:

 \[P(M|O) = \frac{P(O|M) \cdot P(M)}{P(O)} \]
 - \(P(O) \) is fixed and cancels out, but you usually don't know \(P(M) \): depending on the choice, you can have varying results

- **S. Zanero, “Behavioral Intrusion Detection” explains the trick**
Additional thought: HMMs

- A Hidden Markov Model is one where we do not really see the state, but a set of symbols which can be generated with some probability from each state.

- How likely is a given sequence in a HMM?
 - the Forward algorithm

- What is the most probable “path” for generating a given sequence?
 - the Viterbi algorithm

- How can we learn the HMM parameters given a set of sequences?
 - the Forward-Backward (Baum-Welch) algorithm
SyscallAnomaly: analyzing the variables

- SysCall Anomaly, proposed by Vigna et al.
 - Each syscall separately evaluated on 4 separated models
 - (maximum) string length
 - Character distribution
 - Structural inference
 - Token search

- Each model is theoretically interesting, but exhibits flaws in real-world situations
 - Structural inference
 - Realized as a markov model with no probabilities...
 - Too sensitive!
 - Token search
 - No “search”, really: you must predefine what is a token
 - Again, no probabilities
Our proposal

- We evolved the models
 - Structural inference: abolished (halving false positives...)
 - Implemented a model for filesystem paths (depth – structural similarities, e.g. elements in common)
 - Token Search: probabilistic model
 - UID/GID specialization, considering three categories: superuser, system id, regular id

- Now, we wanted to add
 - Correlation among the arguments of a single syscall
 - Hierarchical clustering algorithm to create classes of use
 - Correlation among system calls over time
 - First order Markov model (a Markov chain)
What is clustering?

- Clustering is the grouping of pattern vectors into sets that maximize the intra-cluster similarity, while minimizing the inter-cluster similarity.

- Here “pattern vectors” are the values of various models.

- We used a hierarchical agglomerative algorithm:
 - Pick up the two most similar items.
 - Group them.
 - Compute distance from the new group to other groups.
 - Repeat.

- What is similarity?
 - Two patterns are similar if they are “close”.
 - We had to define similarity for each model type:
 - e.g. is /usr/local/lib similar to /usr/lib? And to /usr/local/doc?
Results of clustering

- The clustering process aggregates similar uses of a same system call
 - E.g.: let us take the open syscalls in fdformat:
 - /usr/lib/libvolmgt.so.1, -rwxr-xr-x
 - /usr/lib/libintl.so.1, -rwxr-xr-x
 - /usr/lib/libc.so.1, -rwxr-xr-x
 - /usr/lib/libadm.so.1, -rwxr-xr-x
 - /usr/lib/libw.so.1, -rwxr-xr-x
 - /usr/lib/libdl.so.1, -rwxr-xr-x
 - /usr/lib/libelf.so.1, -rwxr-xr-x
 - /usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x
 - /devices/pseudo/mm@0:zero, crw-rw-rw-
 - /devices/pseudo/vol@0:volctl, crw-rw-rw-
 - /usr/lib/locale/iso_8859_1/LC_CTYPE/ctype,-r-xr-xr-x

- Each of the clusters is a separate type of syscall (e.g. “open_1”, “open_2”, “open_3”)
A matter of sequence

- We can now build a Markov chain which uses as states the clusters of syscalls, as opposed to the syscalls per se.
- We can train the model easily on normal program executions.
 - Not static analysis, we would include bugs.
- At runtime we will have three “outlier indicators”:
 - The likelihood of the sequence so far.
 - The likelihood of this syscall in this position.
 - The “similarity” of this syscall arguments to the best-matching cluster.
- The first is an indicator of likely deviation of program course, the others are punctual indicators of an anomaly.
So, why don't you have “results”?!

- See my presentation at BH Fed on why the evaluation of intrusion detection systems is mostly useless as of now
- I won't claim with you “False Positive Rates” or “Detection Rates” that I cannot scientifically back
- I can share with you two interesting results
 - Firstly, deviation is contextualized, allowing the analyst to trace it back to the point of entry
 - Secondly, abnormalities can be detected with a better granularity because of the clustering on system calls
Conclusions & Future Work

Conclusions:

- IDS are going to be needed as a complementary defense paradigm (detection & reaction vs. prevention)
- In order to detect unknown attacks, we need better anomaly detection systems
- We can successfully use unsupervised learning for anomaly detection in an host based environment using
 - System call sequence
 - System call arguments

Future developments:

- Integrating this to become an Intrusion Prevention system, maybe using CORE FORCE?
- More extensive real-world evaluation on the go
- Integration with our network based system
Thank you!

Any question?

I would greatly appreciate your feedback!

Stefano Zanero
zanero@elet.polimi.it
www.elet.polimi.it/upload/zanero/eng